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Abstract

This paper describes a numerical method based on quasirandom

points for estimating the probability g(s,t) that vertices s and

t are connected in an undirected network G=(V,M) with VI-. perfect

vertices and "[MI randomly and independently failing edges. It is

shown that the error of estimate, as measured in terms of extreme discrepancy,

has a lower bound proportional to (log K) P(s't)I/2/K for all possible

sampling sequences, but has an upper bound proportional to (log K)1P(s't)I/K

for certain quasirandom sequences, where P(s,t)gM is the union of all

minimal pathsets between s and t and K is the number of replications.

By comparison, previously proposed sampling methods for this problem all

lead to a standard error of estimate proportional to K"1 2 . Moreover,

since quasirandom points are not random, the associated bounds are deterministic.

By using a minimal cutset R(s,t) with a certain special property

these lower and upper bounds become, respectively, (log K)IP(s't)'R(s't){/2/K

and (log K)IP(s't)-R(s't)I/K . This suggests that one choose a cutset

R(s,t) with maximal cardinality. Also, it is shown that the coefficient

of (log K)IP(s't)-R(st)'/K is least if among all cutsets with maximal

cardinality one chooses the cutset with the largest failure probability.

The paper extends the results to more global measures of reliability and

to conditional measures of reliability. A discussion of the computation

time complexity of the proposed method is also included.
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Introduction

Consider an undirected network G (V,M) of IVI vertices and

IMI edges where the vertices always operate and where edge i has

probability qi of operating i e M . Also assume that edges fail

independently. Suppose that one wants to compute g = g(st) , the

probability that s and t s,t e V are connected. Let x. = 1 if

edge i operates and x. = 0 if edge i fails. Let *(xl,..,xIMI; s,t)=l

if the vector (xl,...,XIMI) admits at least one operating path

between s and t and O(xl,...,x1Mj; s,t) = 0 otherwise. Then

;st s1) x

g(s,t) = l  (Xl,...,Ml s,t) n Mi qiXi(l'qi)lxi
Xl=O xIlMI=0

S,t E V

Since the computation time complexity of (1) is 0(21M I) , direct

computation can only be performed for relatively small IMI . To overcome

the computational difficulty, at least three different approaches have

been proposed. The first concentrates on networks with special structure.

For example, Rosenthal (1977) describes a time-saving decomposition method

that applies to loosely connected networks. The effect of this approach

is to make the time complexity 0(2J) where 0 < J < IMI . The second

concentrates on finding bounding inequalities for the reliability measure

at a cost that grows polynomially in IMI . For example, see Zemel (1980).

The third approach uses the Monte Carlo method and, in particular,

stratified sampling techniques. See van Slyke and Frank (1972) and

Diegert and Diegert (1981) . In principle, the Monte Carlo method allows

an investigator to make a tradeoff between the cost of computation and

the accuracy of computation. Although all methods of evaluation on

computers lead to some numerical roundoff error, presumably one adopts
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methods of calculation that keep this error within tolerable bounds.

To this roundoff error the Monte Carlo method adds a sampling error

incurred by performing less than a total enumeration of all the possible

states for (xI,...,x1M1 ) when estimating the reliability measure g
Im

For K replications using independent random sampling, one estimates

g with standard error proportional to I/KI/2  at a cost O(K) for a

given graph G . For an experimental design that employs pure random

sampling, this error is 4g(l-g)/K . Provided that the technique is

judiciously used, the effect of stratified sampling is to reduce the

numerator of this quantity. But convergence with regard to K remains

proportional to I/KI/2

The purpose of this paper is to describe how one can employ a numerical

method based on quasirandom points to accelerate the rate of convergence of

the error of the estimate of g . Quasirandom points is a specialized

topic related to the Monte Carlo method whose value for problem solution

is most evident in a multivariable setting. In this paper the operating

statuses of the edges constitute this setting. Niederreiter (1978) contains a

comprehensive survey of the theory of quasirandom points and Schmidt (1977)

provides rigorous proofs of all theorems related to quasirandom points

used in the present paper.

After introducing the relevant nomenclature, Section 1 describes

in detail the effect of pure random sampling in a Monte Carlo experiment

on the error of the estimate. It then describes the effect on this error

of replacing pure random sampling by an experimental design based on

quasirandom points. In particular, when estimating g(s,t) , the probability

that nodes s and t are connected, it shows that, for given G , errors

have a deterministic lower bound proportional to (log K)IP(s't)I/2/K for

.......... . .......--...............-.-.. ,- - . .-...... -"",i........ ' ....
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all possible sampling sequences, but have a deterministic upper bound

proportional to (log K)1P(s't)1/K for certain quasirandom sequences,

where P(s,t) is the union of all pathsets between s and t.) Section 2

shows how further improvement in the rates of convergence of the error is

possible by using information available about cutsets of the network. In

particular, it is shown that among all cutsets for which the paths from s

to t each contain exactly one edge in a cutset, using the cutset R(s,t)

with maximal cardinality leads to the most rapidly converging bound on the

error of estimate when quasirandom points are employed. Most notable

is the replacement of (log K)IP(s't)I/ 2  and (log K)IP(s 't)I by

(log K)IP(st)'R(s t)1/ 2  and (log K)IP(s't)R(s 't)I , respectively, in

the bounds on convergence. Also, among all such cutsets, choosing the

one with the largest failure probability gives the smallest coefficient

on (log K)JP(s't)-R(stt)I/K in the upper bound.

Section 3 extends the analysis to the estimation of other reliability

measures, some more global than g(s,t) and others involving conditionality.

The global measures include g(s,T) , the probability that vertex s is

connected to all vertices t c T and h(s,T) , the mean number of s-t

connections t c T . The conditional measures include g(s,tlv) , the

probability that s and t are connected given that edge v fails,

and g(vls,t) , the probability that edge v fails given that s and t

are not connected. The first of these characterizes the criticality of v

whereas the second provides information about a potential source of the

*[ failure to communicate between s and t

Section 4 discusses computation time complexity for the proposed

method when using quasirandom points alone as in Section 1 and when

combined with a cutset as in Section 2.

+All pathsets and cutsets are assumed minimal.
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1. Quasirandon Points

We begin by introducing a relatively general setting for assessingi

error in a multivariable Monte Carlo experiment. Let IN denote the

N-dimensional unit hypercube [0, 1]N , let WN with

0 < < I i=l,... ,N denote an arbitrary ',ox in I'N and let

u =u ...~' I denote a sequence of points in IN Also, let

N (~

and

A(WN;K) n ,umber of points uh**~ that are in W (lb)

Then

AN; = KA(W N;K) -A(W N)1(

measures the absolute error or discrepancy incurred in approximating

A(N N) by K-1A(W N;K) . For a particular sequence u ,one has the

extreme discrepancy

D K = D(N,K,u) =sup ANN;K) (2a)

and the L2 discrepancy

1T T(N,K,u) [f1 12 .. ' 1 2  (
K [N. 4 W;K)dal o I 2b

0 0

Whereas DK leads to a worst case assessment, T leads to an averaging
K K

of mean-square errors. Note that TK !s DK

With regard to the graph G , let

L(s,t) = set of pathsets between s and t (3a)

P (s,t) =pathset r between s and t ,rcL(s,t) (3b)
r

W(Pr(s't)) Hiep (S't) [0,qi) (3c)
r

and

Bj(Pr(S't)) H I ePs) oq(uij (4)

r .crst [. qi -
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where

I[a,b x)Sl if a x < b

= 0 otherwise

0 < uij < I and ui(ui j; iEUrcL(s,t)Pr (s,t)) j=l,2,...

Here the subscript j denotes replication number. As we show shortly,

the selection of a generator for {u ij} determines the nature of the

error incurred in estimating g by the Monte Carlo method. For

convenience of exposition we suppress the (s,t) arguments unless

they are needed to avoid ambiguity.

Observe that

B (Uri  p ) m (Pr) r r EL (5)

Finally, we make repeated use of the expansion

n= (l-Yi) = 1 + ln=l('l)k c Iln r=l " (6)

<5m 1 < ... <m k_<n Y r

Note that if B.(P )=l for some rcL then s and t are connected
on replication j . If H rEL l-B (P r)]=l then s and t are not connected

on replication j Then regardless of the sampling plan employed the

probability that s and t are connected on replication j is

gj(s,t) = pr[(urL(Bj (Pr)=l)] (7)

and the conditional probability that s and t are connected is

g(st)Iuj) = l-RIrcL[l-Bj(Pr)]

(8)

r <... <rmcL 3 i=l r4
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As a first estimator of g we consider

A A
9K = g'(s't) =j- g(s'tluj) (9a)

From (1), (4) and (5) this estimator can be written equivalently as

K -- m lT -1)ml A(ui' W(Pr ); K) (9b)
rl <... <rmEL i

so that

A jILI (-l )m+1 m (1a

rK-g rm=l i=r W<); K) (lOa)
l" m 1

From (2a) one has the extreme discrepancy bound

IKgl 5 D (GK,u) = ILl I D(IU PL,K,u)- m=l r<...<rmEL =i (10b)
1m

and from (3) the L2  discrepancy bound

1 I 2 ]1/2 T*(G,K,u )

0 0
ILI u (100
m l l = T(JuU Pr,K,u) (

rl<... <rmcLPr

Obscrve that P=U P is the set of all arcs in the .athset L

Ur,,L r
If uij iEP j=l,...,K in (4) were independent random variables drawn

A

from the uniform distribution on [0,1) , then g would be unbiased^K

A A 12A
with var gK=g(1-g)/K Since (var g) 2  the standard error of

converges as K 1 /2 , D (G,K,u) cannot converge faster than K-1/2

for pure random sampling. In fact, for N dimensions

v/KD(N,K,u)
lim sup = 1 w.p. 1

K- c 4/o log 'K

a result due to Chung (1949) for N=l and to Kiefer (1961) for N > 1
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Also, Hammersley (1960) shows that for pure random sampling

ET- 2 (2- N  - -N)/K
K= -

How Well Can a Num.ircat Method Pe, rfoAm?

We now turn to an assessment of how well one can expect any numerical

method to perform with regard to convergence as a function of K using the

error bounds D (N,K,u) and T*(N,K,u) . Clearly, one would like to choose

the vector sequence u so that convergence is as rapid as possible. The -ws

1 through 3 provide some useful insights.

Theorem I (van Aardanne-Ehrenfest 1945). For any infinite sequence u w

N I

lim KD(N,K,u) = . (12)

Theorem 2 (Roth 1954). For any sequence u of K points with N 2

T(N,K,u) GNK-I(1og2K)
(N -l)/2  (13)

where

GN = 2(I-N)/2

Theorem 3 (Roth 1954) For any infinite sequence u with N 2 I

T(N,Ku) GNK-1 (lo92K)N/2 . (14)

Also, Roth (1980) has shown that there exists a sequence u for which

the equality holds in (13).

Since it is usually more convenient to use infinite sequences in

practice, the result in (14) is most applicable. Therefore, for a

given graph G one has D (G,K,u) t T (G,K,u) G p1 (log K)(P"
2 /K where

G is a function of IPI only. Note the retardation on convergence

due to IPI and that this result holds for any sequence, random or

nonrandom.

L/

. . .. . . . . . . . . . . . .. .. . . . . .
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Finding a Seouence

Many sequences u are known to give faster convergence than pure

random sampling. Of these at least two nonrandom sequences have the

best known upper bound

ND(N,K,u) : CN(log K)NIK , (1

CN being an increasing function of N and the particular sequence.

Of these the one due to Halton (1960) is the most accessible. The other

is due to Sobol (1967) and is described in Niederreiter (1978).

Let p 2 be an integer. Then every non-negative integer n has

* an expansion of the form

n = Zm i"
n = i aip a E {O,l,...,p-l} 0 i m (16)

where m Log nJ . Moreover, this p-adic representation is unique.
p

Corresponding to (18), one has the radical inverse function

*p(n) = Oaipi'l (17)

The Halton sequence is {p (n+j),...,¢ (n+j); j=l,...K} where pl,...,p,

are the first N prime numbers. These points are uniformly distributed

in IN. Actually, all that is needed to guarantee uniformity of distribution

is that p1,...,pN be pairwise coprime. Note that for given n the sequence

is not random. Since Halton also shows T(N,K,u) ! C (log K)N/K for this

sequence, the upper bounds on D(N,K,u) and T(N,Ku) apart from CN
N

and CN , are the same. Hereafter we concentrate on D (G,K,u) . In the

present case D (G,K,u) : (2 10-l) C (log K)1P1/K . Halton and Smith (1964)

describe an algorithm for generating the Halton sequence. By way of

application Fishman (1983) shows the substantial benefit of using the

Halton sequence to estimate the distribution functions of job completion

time and shortest path time in a stochastic activity network with 18 arcs.

I
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2. Using Cutsets

As just shown the rate of convergence of the upper bound on D (G,K,u)

depends on (log K)'P(s 't)1 where IP(s,t)I is the dimension used for

sampling. If one can reduce this dimension, then the bound on

convergence can be improved. When they apply, series and parallel

reductions and polygon-to-chain reductions (Satyanarayana and Wood 1982)

induce lower dimensionality. This section describes an alternative

method of reducing the dimensionality of sampling by using cutsets.

By a cutset R(s,t) we mean a set of edges that when inoperative

disconnects s and t with probability 1 . Here we need a more

restricted cutset. Assume that no pathset connecting s and t

contains more than one edge in the cutset. At least one such cutset

is guaranteed to exist in G

Let

R(s,t) = a cutset of the network for s and t . (18a)

L r(s,t) = set of pathsets that use arc r rER(s,t). (18b)

Rr(s,t) = R(s,t) r) Pr (s,t) rEL(st) (18c)

Note that R(s,t) = UrL(st)Rr(s,t) and that L(s,t) = IrER(st) Lr(St)

Suppose that on replication j one chooses values only for

.(P-R):{u ; iE(P-R)} . Then the conditional probability that s and

t are connected is

g(s,ttuj(P-R)) : l- r(R{l-qr[l-'mrl-Bj(P m-R))] }

=- R -[lqr XILrl(-l)m (19)
rE r m=l

x rl <. . . < rmELr B I(u :l(Pri-R ri

A
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As a second estimator of g consider

I K
K 1 j g(s,tluj(P-R)) (20a)

9K (2a

After further expansion and rearrangement of terms in (19) one can write

(20a) equivalently as

gK K mLl(')m+l LA(U= W(Pr(st) - R (s,t)))rK Xm=rE (') I1 1 r1rr" m L
(20b)

-x (U m  WRr o-.

r

For pure random sampling with independent replications, gK is
A

unbiased and has var gK < var gK

For the more general setting for u the error bound on in

terms of extreme discrepancy is

IK-l _D (G,K,u) _ L
ml r<...<rmcL (21)

4U= (R D( ml -R )I ,K,u)
u i(ri )  D ui 1 (Pr i-

1 r i

This expression provides several useful insights. In particular,

unlike the earlier sampling plan based on all IPI arcs, the cutset

approach enables one to use the structure of the network at hand to

advantage. First, using the Halton or a like sequence gives

D**(G,K,u) : _< ILI A m  W(R)
1 ~ W ~ IL(urm= r<... <reL i (Rri

m (P -R )i

XC (log K) i=l(ri ri

Iuml(P R )I (22)
=1 r~ r1

- (2 I l1)q.CiP.R (log K)IP -RI
K ,P



where

q= max (qi)
iER

Note that choosing R to be the cutset of maximal cardinality makes

(log K) RI/K converge most rapidly. Moreover, (22) also suggests

that among cutsets with maximal cardinality one should select the one

for which X(W(R)) is least. Note that I-x(W(R)) is the probability

that the cutset R fails. Although identifying cutsets with maximal

cardinality is not a trivial problem, it is conceivable that one can

select a cutset of sufficiently large cardinality to improve the convergence

rate substantially. Sigal, Pritsker and Solberg (1980) proose the use

of this cutset when Monte Carlo methods are used to estimate the distribution

function of the shortest path time in a stochastic activity network.

Also see Fishman (1983).

3. Other Reliability Measures

We now extend the analysis to other measures of reliability. Suppose

one wants to estimate g(s,T) , the probability that vertex s is connected

to all vertices t c T Observe that

g(s,T) =I-pr(U tT (s and t are not connected))

= 1- ITI((_l)m+l pr(Cml (s and ti are not connected))
m=l t <"'..<tmET (3

Moreover, the conditional probability for replication j is

g(s,Tluj) = litETDlrEL(s t)(l.Bj(Pr(St))] . (24)

As a first estimate of g(sT) , one has

1 AsT 1K= g(s,TIu.j) (25)
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Expansion by means of (6) shows that [gK(ST) - g(s,T)I has upper bound

Nproportional to (log K) /K , if the Halton or a like sequence is used,

where

N =IutET P(st)j IMI (26)

Note that for T=V-{s} g(s,T) denotes the probability that all nodes

are connected.

The cutset approach to the estimation of g(s,T) is somewhat more

complex. Recall that R(s,t) denotes a cutset with regard to vertices

s and t . Now assume that the cutsets {R(s,t); teT) are identical.

Denote this cutset by R(s,T) and let P(s,T) = UtTP(st) At least

one such cutset must exist. Now the conditional probability that s is

connected to all nodes in T on replication j is

g(s,TI~j(P(s,T)-R(s,T)))- 1- m=I,(- I l)m~

t 1<..<tm ET
(27)

Here the quantity in the outer braces is the conditional probability that

s is connected to nodes tl,...,t The justification for the form of

(27) derives from the inclusion-exclusion expansion of (23). As a second

estimate of g(s,T) , one has

1
gK(sT) = g Zj=. g(s,Tluj(P(s,T) - R(s,T))) (28)

for which IgK(ST) - g(s,T)J has upper bound proportional to (log K)N/K

for the Halton sequence, where

N = IUt TP(st)- IR(s,T)I (29)

Now suppose that one wants to estimate h(s,T) , the mean number

of s-t (tT) connections. Then one has

A A

hK(S'T) = ZtET gK( s ' t) (30a)
hK(sT IcT9
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and

hK(s.T) ItcT gK(s't) .(30b)

For IhK(s,T) -h(s,T)j the exponent of log K in the upper bound is

N sup IP(s,t)I
tET

and for IFK(s,t) -h(s,T)I it is

N zsup IP(s,t) -R(s,t)1

tET

The estimation of at least two alternative conditional reliability

measures also are of interest. First, suppose one wants to estimate

h(s,tlv) ,the probability that s and t are connected given that edge

v C P(s,t) has failed. This measure characterizes the criticality of v

to the s-t connection. Analogous to (9a) one has with the (s,t)

* argument suppressed

A I .K£1B()]
*hK(s~tIv) =K(l-q V) 1ji 1 qv )uj {l-nrEL [-j pr~ (31)

For the cutset approach with v 4 R(st) one has

hK(s,tiv) =K(l..q) ljl 1iql) (U ) (32a)
v vo

X 0-1 (I-q(1-n (-(
rE Rln r m L r l(mRm)))]

and for v ER(s,t)

KK(s~t Iv) = Xj=l {'1 nrE R r 1MCL (BPm Rm))] 3b
rr$v

The error bounds for k~s,tIv) and W(s,t Iv) remain the same as those

for 9(st) and j(s,t) respectively.

-:.
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The second conditional quantity of interest is h(vls,t) , the

probability that edge v fails (v c P(s,t)), given that s and t do not

communicate. Knowledge of this quantity can be helpful in detection problems.

Here
A [1-AK (S,tlv)](l-q V)
hK(vls't) = (33)

l-6K(St)

and

[l-hK (s,tlv)](l-q V )

KlK(S,t) (34)

Expressions (33) and (34) call for more careful analysis than (32a) and (32b)
A

do. Whereas in the case of pure random sampling hK(s,tlv) and hK(s,tlv)

are unbiased estimators, hK(vIs,t) and hK(vls,t) are biased estimators,

at least for finite K . This is a consequence of both numerator and

denominator in each being random variables. For the approach based on

quasirandom points one may elect to assess errors for

I~l-hK((stlv)](l-q v ) - h(vKs,t)[l- K(s,t)]l and

I[l-hK(S,tlv)](l-q v ) - h(vjs,t)(l-gK(s,t)]I which have K' (log K)IP(s 't)t

and K- (log K)'P(s 't)'R(s't)I , respectively, in their upper bounds for

the Halton and like sequences. Perhaps, it would be more direct to assess
A

merely the errors for [l-hK(s tiv)](l-qv) and [l-WK(s'tIv)](l-qv) for

all v of interest, since the denominators remain the same for all v E P(s,t)

4. Time Complexity Considerations

As mentioned earlier, the fact that computation of g(s,t) in (1) has

time complexity 0(21
M I) motivates one to consider methods of approximation;

in particular, Monte Carlo methods. Therefore, it is only appropriate that
IA

we provide a comparative characterization cf the time complexity of K(St)

in (ga), OK(sT) in (25), AK(sT) in (3Ca), 9K(s~tlv) in (31), gK(s't)

*.
•
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in (20a), gK(sT) in (28), hK(sT) in (30b) and WK(Stlv) in (32).

Firstly and most importantly, although these cited expressions are convenient

for error analysis, they are not intended for literal computation. We

illustrate this point for K = K(s ' t)

Let

SrL(s,t)lBj(Pr(S't))] (35)

so that

A 1 ~K" KK
= ZKj=l xj (36)

To compute Xj using (35) one needs to know L(s,t) and Pr (s,t); reL(s,t)},
3r

a burdensome requirement for a highly redundant network. Moreover, determining

the status of each edge in P(s,t) requires jP(s,t)I steps and the

straightforward computation of B.(P (s,t)) requires IP (s,t)I steps so
Jr r

that X. has complexity O(1P(s,t)I) + O(1 rcL(s,t)1Pr(St))

For this s-t connectedness problem a considerably more efficient

approach exists for computing X. . Basically if s and t are connected

on replication j then X.=0 . Otherwise X.=l . To check for connectedness3

in this single source-single sink setting one can use a relatively straight-

forward labeling algorithm which requires no more than IVI steps. For

example, see the discussion of Dykstra's algorithm in Aho, Hopcroft and

Ullman (1974). As a result the time complexity for (36) is

O(KIP(s,t)I) + O(KIVI) . Note that explicit knowledge of L(s,t) and

{Pr(St) ; rcL(s,t)) is not required. Also note that this result applies
A

to hK(s,tIv) in (31) , as well for each v

The (s,T) single source-multiple sink problem is slightly less

routine. Again, labeling algorithms are knnwn that can determine the

connectedness of a single source s to all sinks t in T in no more
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than IVI steps. Using such an algorithm gives OK(sT) with time

complexity O(KN) + O(KIVI) where

N IutET P(s,t)l . (37)
A

The same result holds for hK(s,T)

When we turn to the cutset approach, the available results on complexity

are mixed at present. Let V(s,t) denote the set of vertices associated

with the cutset R(s,t) and consider the computation of -K(s,t) . Let

Xrj=llmLr(st) [l-B (Pm(s,t)-Rm(s,t))] rcR(s,t) (38)
r

so that (20a) is algebraically equivalent to

gK =  j=l rER(s,t)[l'qrlrj " (39)

Now there is a labeling algorithm for which the time complexity of

determining the s-v connections for all v e V(s,t) is O(JVI) and also

the time complexity of determining the t-v connections for all v c V(s,t)

is O(IVI) . Since the status of the s-v and v-t connections is all

that is necessary for evaluating Xrj in (38) this computation has time

complexity O(IP(s,t) - R(s,t)I) + O(IVI) . Therefore, gK has time

complexity O(KlP(s,t) - R(s,t)l) + O(KIVI) . A little thought shows
a similar analysis for the elements of WK(s,T) . However, no comparable

complexity has been established for K(s,T) .This remains a topic for

continued research.
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